

1 **Maternal Feeding Practices and Child Nutritional Outcomes in Primary Health**
2 **Care Settings in Rivers State, Nigeria. A Clinical Epidemiological Approach**

3

4 **Abstract**

5 **Background:** Child malnutrition remains a critical public health challenge in Nigeria.
6 Maternal knowledge and feeding practices play important roles in improving child
7 nutrition outcomes. The study used a clinical epidemiological approach to assess
8 maternal compliance with recommended feeding practices and its association with child
9 nutritional outcomes in six primary healthcare (PHC) centres in Rivers State, Nigeria.

10 **Methods:** An analytical cross-sectional study was conducted among 410 mothers
11 attending the six PHCs for three months (January 20th, 2025, to April 24th, 2025). Data
12 were collected on sociodemographic characteristics, knowledge, compliance with feeding
13 guidelines, and child nutritional status. Multivariate logistic regression identified
14 predictors of maternal compliance with child feeding practices.

15 **Results:** Mean maternal age was 29.6 ± 5.4 years. Many mothers had secondary or
16 higher education (63.4%), and 76.1% were multiparous. Compliance with feeding
17 guidelines was 51.7%. Children's nutritional indicators showed 29.8% stunting and 18.2%
18 underweight. The predictors of maternal compliance were high maternal knowledge
19 (Adjusted Odds Ratio [AOR]=2.31; 95% CI: 1.54-3.46; $p<0.001$), secondary education or
20 higher (AOR=1.87; 95% CI: 1.21-2.88; $p=0.005$), and household food availability
21 (AOR=2.69; 95% CI: 1.76-4.10; $p<0.001$). Attendance at PHC follow-up visits showed a
22 positive trend (AOR = 1.45; 95% CI: 0.94-2.26), but this was not statistically significant
23 ($p = 0.084$).

24 **Conclusion:** Maternal education, knowledge, and household food availability are key to
25 improving child nutrition. Interventions should improve understanding and access to
26 resources.

27 **Keywords:** Maternal compliance, Child nutrition, Feeding practices, Nigeria, Primary
28 health care

29 **1. Introduction**

30 Malnutrition among children remains a widespread and complex public health challenge,
31 especially in low- and middle-income countries (LMICS) such as Nigeria. Estimates
32 reveal that 38.9 million children under five are overweight, 45 million are wasted, and
33 149 million are stunted worldwide.¹ Malnutrition impedes growth and economic
34 productivity across populations and accounts for nearly half of all deaths in children
35 under five.² Despite numerous interventions and policy frameworks aimed at combating
36 undernutrition, malnutrition rates in Nigeria remain alarmingly high, particularly among
37 children in rural and underprivileged areas.

38 The first 1,000 days, from conception to a child's second birthday, constitute a crucial
39 period for development. Nutritional deficiencies during this time can lead to irreversible
40 physical and cognitive impairments.³ Undernutrition in infancy increases vulnerability to
41 infections, hampers academic success, and diminishes long-term economic potential.⁴
42 Child nutritional outcomes are strongly influenced by maternal feeding practices, which
43 are shaped by knowledge, cultural norms, education, and socioeconomic factors.⁵ WHO
44 and UNICEF's Infant and Young Child Feeding (IYCF) guidelines recommend exclusive
45 breastfeeding for the first six months, followed by the introduction of safe, nutrient-rich
46 complementary foods, and continued breastfeeding for at least two years.¹ In many parts
47 of Nigeria, compliance with these recommendations remains below ideal levels despite
48 awareness campaigns.⁶

49 Numerous studies have demonstrated a strong link between children's nutrition and the
50 fact that children with better anthropometric scores also had mothers with higher
51 knowledge levels, who were more likely to follow recommended IYCF practices.⁷
52 Similarly, maternal education in Nigeria has been positively linked with improved
53 feeding practices and child nutritional indicators.⁸ Nonetheless, structural barriers such as
54 food insecurity, limited access to healthcare services, and entrenched gender norms
55 restricting women's autonomy often hinder the translation of knowledge into consistent
56 practice.⁹

57 The inadequate health infrastructure, particularly in rural primary healthcare (PHC)
58 settings where preventive and promotional services are frequently understaffed and
59 underfunded, exacerbates the malnutrition problem. The PHC system, designed to serve
60 as the initial point of contact for healthcare within the national health architecture, is vital
61 for delivering maternal and child health interventions. However, research on the
62 effectiveness of PHC-based nutritional education and support remains limited.

63 **2.1 Study Design**

64 This study was an analytical cross-sectional design to assess the clinical epidemiological
65 factors influencing maternal compliance with recommended feeding practices and their
66 association with child nutritional outcomes. The study was for three months (January 20th,
67 2025, to April 24th, 2025).

68 **2.2 Study Setting**

69 The study was conducted in six PHC centres in three Local Government Areas (LGAs) in
70 Rivers State, namely Obio/Akpor, Oyigbo and Eleme LGAs. Rivers State is in the South-
71 South geopolitical zone of Nigeria and has a diverse population spread across urban, peri-
72 urban, and rural-riverine areas. It has twenty-three LGAs, with varying population
73 densities, socioeconomic profiles, and healthcare coverage. Port Harcourt, the state
74 capital, is an important industrial and economic hub with major seaports and oil
75 companies. Rivers State has an estimated population of nine million with an annual
76 growth rate of 3.2% as of 2025. Port Harcourt, the State capital, has an estimated
77 population of 3 million. This is due to urbanisation and economic opportunities in the oil
78 and gas sector. The state's economy is driven by the oil and gas industry, which includes
79 multinational companies. Traditional occupations include subsistence farming, fishing,

80 and aquaculture, especially in the riverine communities. A proportion of the workforce
81 serves in administrative positions for the State and Federal Governments. The PHC
82 system in the State operates as the frontline structure in Nigeria's National Health system,
83 providing preventive and curative services to local populations, especially mothers and
84 children.

85

86 **2.3 Study Population**

87 The target population was mothers aged 18-49 years with children between 6 months and
88 59 months old who were attending immunisation and child welfare clinics at the six PHC
89 centres.

90 **2.4 Sample Size Determination**

91 The minimum sample size (n) was calculated using the Cochran formula for a single
92 proportion:

$$93 n = Z^2 pq / e^2$$

94 Where:

95 $Z = 1.96$ (standard normal deviation at 95% confidence level).

96 p = estimated proportion of maternal compliance (50% due to unavailable prior data).

97 $q = 1 - p$.

98 e = margin of error (0.05).

$$99 n = (1.96)^2 \times 0.5 \times 0.5 / (0.05)^2 = 384.$$

100 Adjusting for a 10% non-response rate: $384/1-0.1=384/0.9 = 427$.

101 However, a total of 410 valid responses were analysed after data cleaning.

102 **2.5 Sampling Technique**

103 A multistage sampling technique was used to select study participants from the target
104 population. It had three stages:

105 **Stage 1 Selection of Local Government Areas (LGAs)**

106 A simple random sampling method was used to select three LGAs from the list of
107 twenty-three LGAs in the state through balloting. The selected LGAs were Obio/Akpor,
108 Etche, and Oyigbo LGAs.

109 **Stage 2 Selection of Primary Health Care Centres**

110 Within each selected LGA, a list of all operational PHC centres offering maternal and
111 child health services was obtained from the Rivers State Primary Health Care
112 Management Board. From this list, two PHC centres from each LGA were randomly
113 selected using simple random sampling by balloting to give a total of six PHCs. The
114 selected PHCs were the Model Primary Healthcare Centre (MPHC) at Rumuigbo and
115 Rumuolumeni in Obio/Akpor LGA; MPHC at Odufor, and Akwa in Etche LGA; MPHC
116 at Mirinwanyi, and Obete in Oyigbo LGA.

117 **Stage 3 Participant Recruitment within PHC Centres**

118 At each PHC centre, systematic random sampling was used to recruit eligible mothers.
119 Clinic registers from the child welfare and immunisation sessions were used to estimate
120 the average daily turnout. Using this estimate and the sample size quota for each facility,
121 the sampling interval of every 5th eligible mother was determined.

122 On each clinic day, data collectors approached every 5th mother meeting the inclusion
123 criteria. If a selected mother declined participation or was ineligible, the next eligible
124 respondent was approached.

125 **2.6 Sample Allocation**

126 The total sample size of 410 was proportionally allocated across the six selected PHCs
127 based on average monthly attendance figures, ensuring fair representation across sites.

128 **2.7 Eligibility**

129 **2.7.1 Inclusion Criteria:**

- 130 1. Mothers aged 18 years and above.
- 131 2. Having a child between 6 and 59 months.
- 132 3. Attending routine services (immunisation, growth monitoring, child welfare).
- 133 4. Resident in the community for a minimum of 12 months.
- 134 5. Provided written informed consent or verbal consent.

135

136 **2.7.2 Exclusion Criteria:**

- 137 1. Children with congenital or chronic conditions that affect growth.
- 138 2. Visitors or non-resident caregivers.

139

140 **2.8 Data Collection Instruments**

141 **2.8.1 Questionnaire**

142 A structured interviewer-administered questionnaire was adapted from WHO IYCF
143 guidelines and validated tools used in prior nutritional studies. It comprised sections on
144 sociodemographic characteristics, maternal knowledge of feeding practices, compliance
145 with IYCF recommendations, and household food security. The questionnaire was
146 pretested on 30 mothers at MPHc Akpajo in Eleme LGA, which is outside the study
147 LGAs, to ensure clarity and reliability.

148 **2.8.2 Anthropometric Measurements**

149 Child height/length was measured using a portable stadiometer or infantometer (for
150 children under 2 years), and weight was measured using a standardised digital scale. The
151 height-for-age z-scores (HAZ) and weight-for-age z-scores (WAZ) were calculated using
152 WHO Anthro software to determine stunting and underweight, respectively.

153

154 **2.9 Operational Definitions**

155 Compliance with feeding guidelines was defined as adherence to core IYCF practices

156 appropriate for the child's age, including exclusive breastfeeding for infants under six
157 months and timely, appropriate complementary feeding for older children.
158 High maternal knowledge was defined as a score $\geq 75\%$ on the IYCF knowledge section.
159 Food security was assessed using the Household Food Insecurity Access Scale (HFIAS).

160 **2.10 Data Management**

161 Data management procedures were implemented to ensure accuracy, confidentiality, and
162 integrity of the information collected during the study. All data were handled in
163 accordance with ethical standards and established research protocols.

164 **2.10.1 Data Collection and Entry**

165 Data were collected using a structured, interviewer-administered questionnaire and
166 anthropometric measurement tools. Four field data collectors, who received training
167 before the study, verified questionnaire completeness and accuracy immediately after
168 each interview. Each completed form was checked for consistency and missing values
169 before being accepted.

170 Data were double-entered into Microsoft Excel 365 by two independent data entry clerks
171 to minimise entry errors. A comparison of the two datasets was carried out, and
172 discrepancies were resolved by referring to the original questionnaires.

173 **2.10.2 Data Cleaning and Coding**

174 Following the entry, the dataset was cleaned to remove inconsistencies, duplicates, and
175 outliers. Categorical variables (e.g., maternal education, feeding knowledge level) were
176 coded numerically for statistical analysis. Continuous variables (e.g., maternal age, child
177 weight and height) were reviewed for biologically plausible values based on WHO
178 standards.

179 Anthropometric data were converted to Z-scores (Height-for-Age, Weight-for-Age) using
180 WHO Anthro software version 3.2.2. Outliers with biologically implausible Z-score
181 values (e.g., HAZ < -6 or $> +6$) were excluded from the analyses.

182 **2.10.3 Data Storage and Confidentiality**

183 Each participant was assigned a unique identifier code to ensure anonymity. No personal
184 identifiers (e.g., names, contact details) were entered into the dataset. Electronic data files
185 were protected and stored on a secure, encrypted computer accessible only to the
186 principal investigator and data analysts.

187 Physical documents, including consent forms and questionnaires, were stored in a locked
188 cabinet in the office of the corresponding author within the Department of Community
189 Medicine, Faculty of Clinical Sciences, Rivers State University. These will be retained
190 for a minimum of five years in compliance with institutional data retention policies.

191 **2.10.4. Data Sharing**

192 Data from this study were not publicly available due to ethical restrictions, but may be
193 made available on reasonable request to the corresponding author.

194 **2.11 Data Analyses**

195 Data were entered into Microsoft Excel 365 and exported to SPSS version 27.0 for
196 analyses. Descriptive statistics such as means, standard deviations, and proportions were
197 used to summarise variables. Chi-square tests and t-tests were used to assess associations
198 between maternal characteristics and compliance. Multivariate logistic regression was
199 performed to identify independent predictors of adherence. The WHO Anthro software
200 version 3.2.2. was used for anthropometric Z-score calculations and classification of
201 nutritional status. Statistical significance was set at $p < 0.05$.

202

203 **3 Results**

204 **3.1 Sociodemographic Characteristics of Mothers:**

205 The study included 410 mothers with a mean age of 29.6 ± 5.4 years. The majority
206 (63.4%) had attained at least secondary education, and a substantial proportion (76.1%)
207 were multiparous. 55.2% of respondents reported monthly earnings less than ₦40,000.
208 Most mothers (87.1%) were married, and 76.1% were multiparous (Table 1).

209 **3.2 Maternal Feeding Knowledge and Compliance**

210 Over half of the mothers (58.5%) demonstrated high knowledge scores ($\geq 75\%$) based on
211 WHO IYCF indicators. Knowledge assessed included exclusive breastfeeding,
212 complementary feeding, meal frequency, and food diversity. Good knowledge was
213 particularly reported among mothers with tertiary education and those regularly attending
214 PHC-based health education sessions (Table 2).

215

216 **3.2.1 Compliance with Recommended Feeding Practices**

217 Despite the relatively high knowledge levels, only 51.7% of mothers were fully
218 compliant with age-appropriate IYCF guidelines compared to 48.3% who were non-
219 compliant (Table 2; Figure 1). Compliance was assessed based on reported feeding
220 behaviours in the past 24 hours and aligned with WHO-recommended practices. Notable
221 gaps included early introduction of solid foods (among infants < 6 months), low dietary
222 diversity in complementary feeding, and inadequate meal frequency.

223

224 **3.3 Child Nutritional Status**

225 Anthropometric assessment showed that 29.8% of children were stunted (HAZ < -2 SD),
226 18.2% were underweight (WAZ < -2 SD), and 52.0% had normal nutritional status
227 (Figure 2). The distribution of stunting was higher among children whose mothers had
228 lower education levels and who lived in food-insecure households.

229 **3.4 Mean LAZ Scores by Compliance Status**

230 Children of compliant mothers had significantly higher mean Length-for-Age Z (LAZ)
231 scores compared to those of non-compliant mothers ($p < 0.001$) (Figure 3). This
232 reinforces the critical role of maternal practices in influencing linear growth and
233 preventing chronic undernutrition. Children of compliant mothers had significantly better
234 growth scores (Figure 3):

235 a. Mean LAZ for compliant group: -1.03 ± 1.12 .
236 b. LAZ for non-compliant group: -1.72 ± 1.19 .
237 c. t-test p-value: 0.003.

238 **3.5 Multivariable Logistic Regression Analysis**

239 After adjusting for confounders, logistic regression identified three key predictors of
240 maternal compliance as high maternal knowledge (Adjusted Odds Ratio [AOR]=2.31; 95%
241 CI: 1.54-3.46; $p < 0.001$), secondary education or higher (AOR=1.87; 95% CI: 1.21-2.88;
242 $p=0.005$), and household food availability (AOR=2.69; 95% CI: 1.76-4.10; $p < 0.001$).
243 Attendance at PHC follow-up visits showed a positive trend (AOR=1.45; 95% CI: 0.94-
244 2.26) but did not reach statistical significance ($p=0.084$) (Table 3).

245 **Table 1. Sociodemographic Characteristics of Mothers (N = 410)**

Characteristic	Frequency (%)
Age (mean \pm SD)	29.6 ± 5.4 years
Education Level	
No formal education	8.1
Primary education	28.5
Secondary education	39.0
Tertiary education	24.4
Marital Status	
Married	81.7
Single	12.2
Widowed/Divorced	6.1

Characteristic	Frequency (%)
Parity	
Primiparous	23.9
Multiparous	76.1

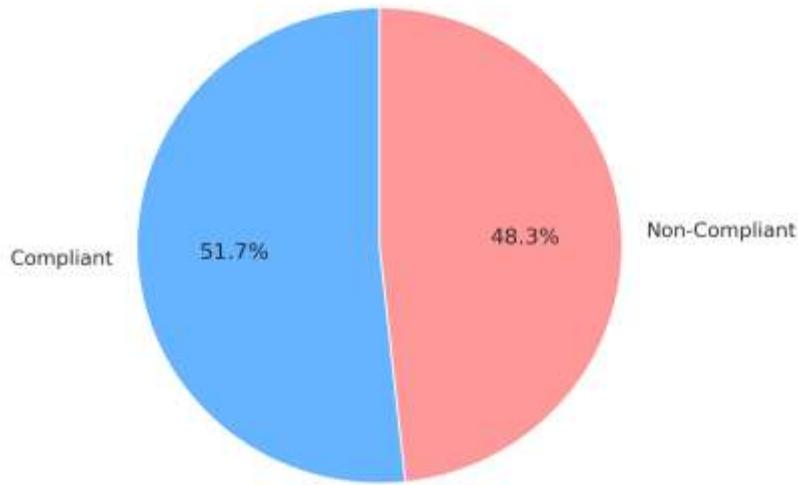
246 **Table 2. Maternal Feeding Knowledge and Compliance**

Variable	Frequency (%)
Knowledge Level	
Low	21.2
Moderate	26.3
High	52.4
Compliance with Recommended Feeding	
Compliant	51.7
Non-compliant	48.3

247 **Table 3. Multivariable Logistic Regression Analysis**

Predictor	AOR	95% CI	p-value
High knowledge score	2.31	1.54–3.46	<0.001
Secondary education or higher	1.87	1.21–2.88	0.005
Household food availability	2.69	1.76–4.10	<0.001
PHC follow-up attendance	1.45	0.94–2.26	0.084

248

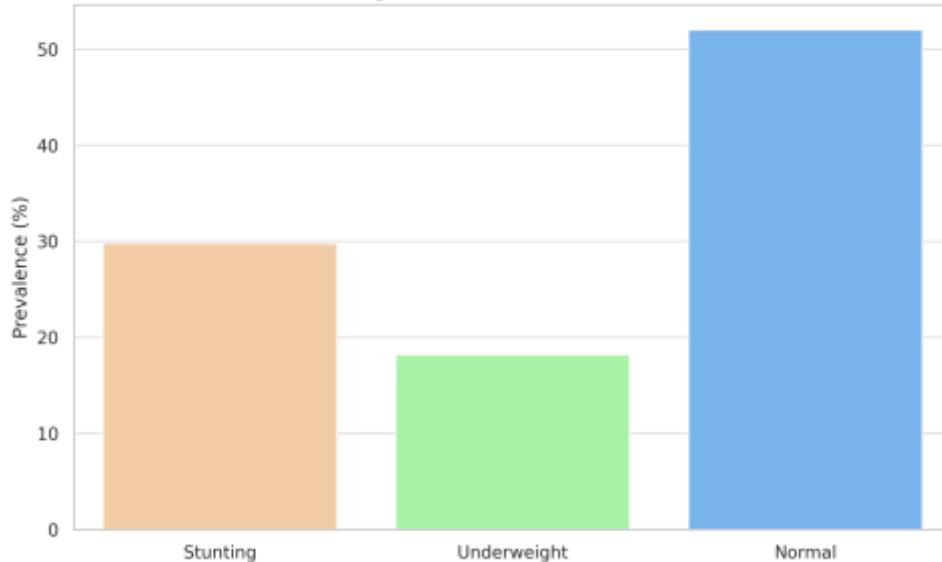

249

250

251

252

Figure 1: Maternal Compliance Distribution

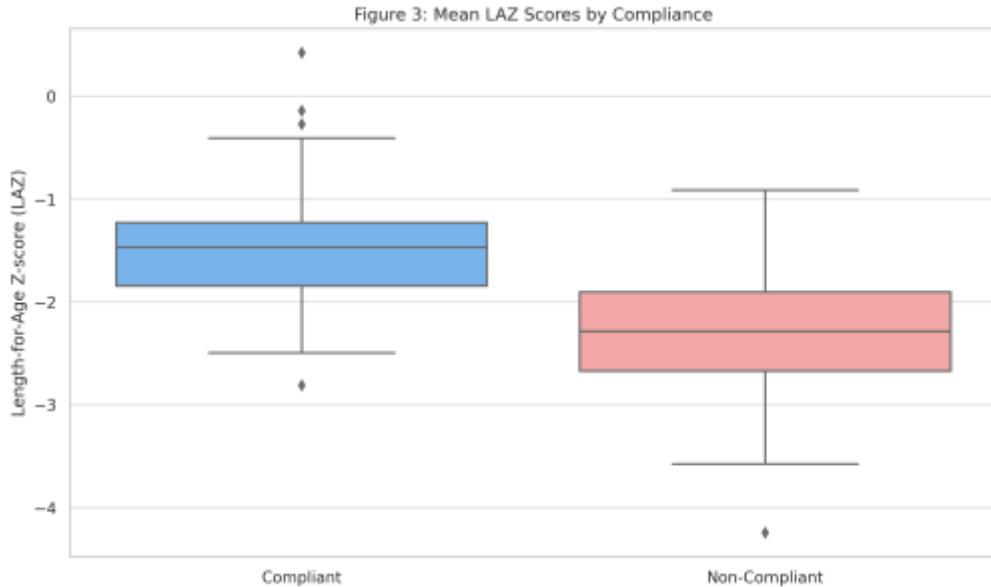

253

254 Figure 1. Distribution of Maternal Compliance with Feeding Guidelines

255

256

Figure 2: Child Nutritional Status


257

258 Figure 2. Child Nutritional Status Based on Anthropometric Indicators

259

260

261

262

263

264 Figure 3. A box plot comparing mean LAZ scores between compliant and non-compliant
265 groups.

266 **4. Discussion**

267 This study provided an important clinical epidemiological understanding of the
268 determinants of maternal compliance with infant and young child feeding (IYCF)
269 guidelines and their effect on the nutritional status of children within the primary
270 healthcare (PHC) context of Rivers State. Despite the relatively high proportion of
271 mothers with adequate knowledge of appropriate feeding practices, only a little over half
272 adhered to these practices. This disparity shows the disconnect between acquiring
273 knowledge and behavioural application, emphasising the role of structural and contextual
274 barriers that prevent effective implementation of health information.

275 The high prevalence of stunting (29.8%) and underweight (18.2%) among children in the
276 study underscored the persistent burden of chronic malnutrition in Nigeria, aligning with
277 national demographic and health survey data.¹⁰⁻¹³ Stunting is a key indicator of chronic
278 nutritional deprivation, and its link with maternal non-compliance emphasised that early-
279 life nutritional interventions are important for linear growth and are significantly
280 influenced by maternal and contextual socioeconomic factors.^{4,14}

281 Maternal knowledge was reported as a strong predictor of compliance, which is
282 consistent with findings from Ethiopia, India, and Southeast Asia, where maternal
283 education and knowledge were linked to improved feeding practices and anthropometric
284 outcomes in children.^{7,15} However, this study added nuance by demonstrating that
285 knowledge alone is insufficient for behaviour change unless accompanied by enabling
286 socioeconomic and structural support.

287 Education, as a proxy for socioeconomic status and health literacy, significantly
288 influenced maternal feeding behaviour. Mothers who had at least a secondary education
289 were nearly twice as likely to comply with IYCF guidelines as those without formal
290 education. This supports a growing body of literature that shows maternal education as a
291 key social determinant of child health.^{3,5,16} Education enhances comprehension of health
292 messages, facilitates better allocation of resources, and often correlates with higher
293 utilisation of maternal-child health services.

294 Household food security also significantly influenced feeding compliance. Food
295 insecurity limits the availability and variety of complementary foods necessary for
296 dietary diversity, resulting in suboptimal feeding practices even among mothers who are
297 knowledgeable. This finding aligns with recent systematic evidence, which showed that
298 household food insecurity is significantly associated with stunting in children across
299 diverse contexts.^{17,18} Addressing food security requires both short-term and long-term
300 strategies, including targeted supplementation programs, agricultural support, and social
301 protection measures.¹⁹

302 Interestingly, while attendance at PHC follow-up visits showed a positive association
303 with feeding compliance, it was not statistically significant. This may reflect different
304 quality of nutrition counselling across facilities or a lack of time and individualised
305 attention during routine immunisation sessions.²⁰ Furthermore, the association between
306 compliance and improved mean Length-for-Age Z (LAZ) scores showed the clinical
307 impact of maternal feeding behaviour on growth outcomes of the child.^{8,21} LAZ scores,
308 being sensitive indicators of long-term nutritional status, provide a reliable measure of
309 the effectiveness of household-level feeding practices over time. This affirms the utility
310 of LAZ as a critical outcome metric in clinical epidemiological studies of malnutrition.⁴

311 The forest plot of adjusted odds ratios (AORs) emphasises the predictive value of
312 modifiable factors such as knowledge, education, and food availability, suggesting areas
313 for intervention.⁴ Targeted nutrition education alone may yield modest results unless this
314 is complemented with household-level support mechanisms such as conditional cash
315 transfers, food supplements, and women's empowerment programs.^{22,23}

316 These findings have important implications for PHC policy and practice in Rivers State.
317 Child's nutrition counselling services need to be standardised and integrated into routine
318 PHC services for mothers with lower educational attainment and those residing in food-
319 insecure households.

320 The high rate of compliance among educated mothers who also reported access to food
321 resources reinforces the need for multi-pronged interventions. Evidence-based nutrition
322 promotion efforts must include knowledge dissemination, community-based support
323 groups, peer counsellors, and culturally tailored messaging to improve acceptance and
324 sustainability of recommended feeding practices.²²

325 Overall, this study reinforced that maternal compliance with IYCF guidelines is a
326 complex, multifactorial behaviour influenced by both knowledge and contextual enablers.

327 Addressing only the educational component without tackling food insecurity, poor health
328 system engagement, and broader social determinants may limit the impact of
329 interventions.²⁴

330 By adopting a clinical epidemiological approach, this study bridged the gap between
331 public health and clinical care, providing evidence that can be translated into actionable,
332 PHC-based interventions aimed at improving maternal and child health outcomes.²⁵

333 **Limitations of the Study**

334 Several limitations must be noted, even though this study offered insightful clinical
335 epidemiological information about maternal feeding habits and the nutritional outcomes
336 of children:

337 **1. Cross-sectional design**

338 The study's cross-sectional design limits the capacity to conclude causality. Although
339 correlations between maternal traits and feeding compliance were found, causality cannot
340 be established without longitudinal research.

341 **2. Self-Reported Information**

342 The majority of the data on feeding habits and household characteristics came from
343 maternal self-report, which can be subject to recall or social desirability bias, especially
344 when it comes to reporting food frequency or exclusive breastfeeding.

345 **3. Restricted Geographic Reach**

346 The results may not apply to other parts of Nigeria with distinct cultural, socioeconomic,
347 or health infrastructure contexts because the study was limited to a few PHCs in Rivers
348 State.

349 **4. Confounding variables that are not measured**

350 Although they may have a substantial impact on feeding practices and child outcomes,
351 factors like maternal mental health, household dynamics, and cultural feeding norms
352 were not assessed.

353 **5. Limitations of Anthropometric Measurement**

354 Despite the use of standardised tools and processes, child cooperation and movement
355 may have affected measurement accuracy, particularly in younger children.

356 **6. Sampling bias and non-response**

357 Systematic differences between respondents and non-respondents may have introduced
358 bias into the results, although the study used a non-response rate.
359 Notwithstanding these drawbacks, the study provided a solid basis for creating
360 interventions and regulations aimed at enhancing maternal adherence and the nutritional
361 status of children in PHC environments.

362 **Contribution to Knowledge**

363 This study makes several important contributions to existing knowledge on maternal
364 feeding practices and child nutrition within primary health care settings in Nigeria:

- 365 1. Strengthens clinical epidemiological evidence at the PHC level:
366 The study applies a clinical epidemiological approach to maternal and child
367 nutrition, providing evidence that links feeding practices directly with measurable
368 child health outcomes in PHC facilities in Rivers State.
- 369 2. Identifies key modifiable predictors of feeding compliance:
370 Maternal knowledge, secondary or higher education, and household food
371 availability were shown to be independent predictors of adherence to
372 recommended infant and young child feeding practices. These findings highlight
373 clear intervention points for improving maternal behaviour.
- 374 3. Quantifies the knowledge-practice gap:
375 Despite relatively high IYCF knowledge among mothers, only about half
376 complied with recommended feeding guidelines. This demonstrates a significant
377 gap between knowledge and practice and underscores the influence of
378 socioeconomic and structural constraints.
- 379 4. Demonstrates the impact of maternal compliance on child growth:
380 Children of compliant mothers had significantly better LAZ scores, providing
381 robust local evidence that appropriate feeding practices contribute to improved
382 linear growth and reduced chronic undernutrition.
- 383 5. Provides context-specific data for policy and PHC programming:
384 The study adds current empirical data from Rivers State, an area with limited
385 published evidence on maternal feeding practices and child nutritional outcomes.
386 These findings support the need for strengthened PHC nutrition counselling and
387 integrated food security interventions.
- 388 6. Highlights the need to improve the quality of PHC nutrition services:
389 Although follow-up attendance showed a positive trend, its lack of statistical
390 significance signals gaps in the consistency and effectiveness of nutrition
391 counselling at the PHC level.

392

393

394 **5 Conclusion and Recommendations**

395 **5.1 Conclusion**

396 In primary healthcare (PHC) settings in Rivers State, this study explored the clinical
397 epidemiological factors that influence maternal adherence to infant and young child
398 feeding (IYCF) practices and the associated nutritional outcomes for children. The
399 findings indicated that maternal knowledge, educational level, household food security,
400 and healthcare engagement interact in a complex manner to shape feeding behaviours,
401 which subsequently impact the nutritional status of children under five.

402 While over 50% of the mothers who participated in the survey demonstrated a high level
403 of understanding regarding proper feeding techniques, this did not always translate into
404 adherence. The fact that only roughly 51.7% of respondents followed the suggested
405 IYCF practices suggested that knowledge is a necessary but insufficient prerequisite for
406 behaviour change. The complexity of maternal decision-making in low-resource
407 environments is highlighted by this knowledge-behaviour gap, where socioeconomic and
408 structural limitations frequently take precedence over educational achievements.

409 The study also found that improved child nutritional indicators, especially Length-for-
410 Age Z scores (LAZ), which are important indicators of chronic nutritional status, are
411 strongly correlated with maternal compliance. The clinical significance of consistent,
412 evidence-based feeding behaviour during early childhood was further supported by the
413 significantly better anthropometric results of children whose mothers followed feeding
414 guidelines.

415 Three independent predictors of maternal compliance were found using multivariate
416 logistic regression: household food security, secondary or higher education, and high
417 maternal knowledge. These results align with earlier research, but they place these
418 predictors in a unique context within the PHC system of Rivers State. Although it was not
419 statistically significant, attendance at PHC clinics showed a positive trend, indicating
420 room for improvement in the primary care level's nutrition-related service delivery and
421 content.

422 Despite the availability of PHC services and relatively high levels of maternal
423 knowledge, the prevalence of stunting and underweight remains, revealing structural
424 weaknesses in Rivers State's efforts to combat childhood malnutrition. These disparities
425 are further worsened by sociocultural norms, poverty, food insecurity, and unequal access
426 to health education. The study's conclusions emphasise the need for a comprehensive,
427 multi-sectoral approach to improve child nutrition outcomes by empowering mothers and
428 implementing systemic reforms. Ultimately, this study underscores the importance of
429 employing a clinical epidemiological approach when examining the health behaviours of
430 mothers and children. It offers valuable initial points for interventions that can be applied
431 and scaled within existing healthcare systems by focusing on modifiable predictors in the
432 PHC setting.

433 **5.2 Recommendations**

434 1. Include Nutrition Education Standards in PHC Services

435 Maternal-child health services at PHCs should include nutrition education as a required
436 and standardized component. WHO-adapted IYCF modules should be used to train health
437 workers, and job aids should be developed for consistent counselling during antenatal,
438 postnatal, and immunisation visits.

439 2. Strengthening Health Worker Capacity through Continuous Training

440 Periodic in-service training in communication, behaviour modification techniques, and
441 counselling skills is necessary for health professionals employed by PHC centres. To
442 increase acceptability and trust, training should cover both technical knowledge and
443 cultural sensitivity.

444 3. Encourage female education as a long-term approach to nutrition

445 As a long-term strategy to stop the cycle of malnutrition, policymakers and interested
446 parties should fund education for girls. Maternal literacy and long-term health outcomes
447 can be improved through literacy campaigns, school attendance incentives, and adult
448 education initiatives.

449 4. Implement Conditional Cash Transfer and Food Voucher Programs

450 Government and partners should explore conditional cash transfers linked to maternal
451 attendance at health and nutrition education sessions. Additionally, direct nutritional
452 supplementation should be provided to food-insecure households to enhance compliance
453 with feeding recommendations.

454 5. Peer Support Systems in the Community

455 Creating peer groups in the community, such as mother-to-mother support networks, can
456 promote information exchange, support behavioural reinforcement, and offer mothers
457 trying to follow feeding guidelines, both practical and emotional support.

458 6. Utilising Technology for Mobile Health (mHealth)

459 Voice messages, SMS-based nutrition advice, and mobile phone-based reminders can all
460 support facility-level health education messages. Mothers with limited time or mobility
461 can benefit greatly from mHealth.²⁶

462 7. Involve Men in Family Decision-Making

463 Elders or spouses frequently have an impact on feeding decisions. Through community
464 discussions and educational initiatives that question harmful cultural norms and
465 encourage shared responsibility for child nutrition, interventions should involve men and
466 important household members.

467 8. Use Agricultural and Social Protection Programs to Address Food Insecurity

468 Nutritional compliance is based on food security. Governments and NGOs should
469 promote home gardening, micro-livestock farming, and agricultural input subsidies while

470 scaling up social protection programs for vulnerable populations.
471 9. Monitor and Evaluate Nutrition Services
472 PHC data systems should incorporate routine feeding practice and child growth
473 monitoring. Mothers' opinions should also be regularly gathered to enhance counselling
474 methods and service delivery.

475 **Innovations in the Study**

476 1. The study integrates clinical epidemiological methods into the assessment of maternal
477 feeding practices, linking behavioural factors with anthropometric outcomes in PHC
478 settings.
479 2. A multistage sampling approach across six PHC facilities provides a replicable model
480 for nutrition research and improves representativeness.
481 3. The study quantifies the knowledge–practice gap in IYCF adherence, highlighting
482 structural and behavioural constraints affecting maternal compliance.
483 4. It demonstrates a direct association between maternal compliance and improved LAZ
484 scores, contributing new local evidence on determinants of linear growth.
485 5. The identification of modifiable predictors—maternal knowledge, education, and
486 household food availability—offers actionable intervention targets for PHC nutrition
487 programmes.
488 6. It generates context-specific data for Rivers State, addressing a major gap in local child
489 nutrition evidence and informing PHC policy strengthening.

490 **Further Research**

491 This study sets the stage for future longitudinal and interventional research to assess the
492 long-term impact of multifaceted strategies. Randomised controlled trials and
493 implementation research should be prioritised to generate high-quality evidence for
494 policy adoption.

495 **Ethical Considerations**

496 Ethical approval was obtained from the Rivers State Primary Health Care Management
497 Board. Permission was also obtained from the Medical Officers of Health in Charge of
498 the three LGAs and the officers in charge of the PHCs. Written or verbal informed
499 consent was obtained from all participants. Confidentiality and anonymity were strictly
500 maintained, and participants could withdraw at any stage without consequence.

501 **Authors' contributions**

502 Nduye Christie Tobin Briggs conceptualised, planned, collected the data for the study,
503 and prepared the manuscript. Ifeoma Christiana Nwadiuto supervised data collection,

504 data entry, analysis, interpreted the results, and proofread the manuscript. All the authors
505 read and approved the final version of the manuscript.

506

507 **Competing interests**

508

509 The authors have declared that no competing interests exist.

510 **Conflict of interest**

511 The authors declare no conflict of interest.

512 **Sponsorship and Financial Support**

513 The research received no external financial support.

514 **Acknowledgment**

515 The authors acknowledge the Medical Officers of Health in charge of the three LGAs, the
516 heads of the PHC facilities, the community guides, heads of households, and the mothers
517 of the children for their participation in the study.

518 **References**

- 519 1. World Health Organization. Malnutrition [Internet]. Geneva: World Health
520 Organization; 2024 [cited 2025 Dec19]. Available from: <https://www.who.int/health-topics/malnutrition>
- 522 2. UNICEF, World Health Organization, World Bank Group. Levels and trends in child
523 malnutrition: Key findings of the 2023 edition [Internet]. Geneva: World Health
524 Organization; 2023 [cited 2025 Dec 19]. Available from:
<https://www.who.int/publications/i/item/9789240073791>
- 526 3. Victora CG, Christian P, Vidaletti LP, Gatica-Domínguez G, Menon P, Black RE.
527 Revisiting maternal and child undernutrition in low-income and middle-income
528 countries: Variable progress towards an unfinished agenda. *Lancet*.
529 2021;397(10282):1388–99. [https://doi.org/10.1016/S0140-6736\(21\)00394-9](https://doi.org/10.1016/S0140-6736(21)00394-9)
- 530 4. Obasohan PE, Walters SJ, Jacques R, Khatab K. Socio-economic, demographic, and
531 contextual predictors of malnutrition among children aged 6-59 months in Nigeria. *BMC*
532 *Nutr.* 2024;10(1):1. <https://doi.org/10.1186/s40795-023-00813-x>
- 533 5. Keats EC, Das JK, Salam RA, Lassi ZS, Imdad A, Black RE, et al. Effective
534 interventions to address maternal and child malnutrition: An update of the evidence.
535 *Lancet Child Adolesc Health.* 2021;5(5):367–84. [https://doi.org/10.1016/S2352-4642\(20\)30274-1](https://doi.org/10.1016/S2352-4642(20)30274-1)

537 6. Adebayo AM, Ilesanmi OS, Falana DT, Olaniyan SO, Kareem AO, Amenkhienan IF,
538 et al. Prevalence and predictors of exclusive breastfeeding among mothers in a semi-
539 urban Nigerian community: a cross-sectional study. *Ann Ibadan Postgrad Med.*
540 2021;19(1):31–9.

541 7. Mekonnen M, Kinati T, Bekele K, Tesfa B, Hailu D, Jemal K. Infant and young child
542 feeding practice among mothers of children age 6 to 23 months in Debrelibanos district,
543 North Showa zone, Oromia region, Ethiopia. *PLoS One.* 2021;16(9):e0257758.
544 <https://doi.org/10.1371/journal.pone.0257758>

545 8. Ene-Obong HN, Onuoha NO, Eme PE. Gender roles, family relationships, and
546 household food and nutrition security in Ohafia matrilineal society in Nigeria. *Matern
547 Child Nutr.* 2017;13(Suppl 2):e12506. <https://doi.org/10.1111/mcn.12506>

548 9. Ekholuenetale M, Wegbom AI, Tudeme G, Onikan A, Eze G. Household factors
549 associated with infant and under-five mortality in sub-Saharan Africa countries. *Int J
550 Equity Health.* 2020;14:10. <https://doi.org/10.1186/s40723-020-00075-1>

551 10. Amugsi DA, Mittelmark MB, Oduro A. Association between maternal and child
552 dietary diversity: An analysis of the Ghana Demographic and Health Survey. *PLoS One.*
553 2015;10(8):e0136748. <https://doi.org/10.1371/journal.pone.0136748>

554 11. Fadare O, Amare M, Mavrotas G, Akerele D, Ogunniyi A. Mother's nutrition-related
555 knowledge and child nutrition outcomes: Empirical evidence from Nigeria. *PLoS One.*
556 2019;14(2):e0212775. <https://doi.org/10.1371/journal.pone.0212775>

557 12. John C, Poh BK, Jalaludin MY, Michael G, Adedeji I, Oyenusu EE, et al. Exploring
558 disparities in malnutrition among under-five children in Nigeria and potential solutions: a
559 scoping review. *Front Nutr.* 2024;10:1279130. <https://doi.org/10.3389/fnut.2023.1279130>

560 13. National Population Commission (NPC), ICF. Nigeria Demographic and Health
561 Survey 2023–24 – Key Indicators [Internet]. Rockville, Maryland, USA: NPC and ICF;
562 2023 [cited 2025 Dec 19]. Available from:
563 <https://dhsprogram.com/pubs/pdf/PR143/PR143.pdf>

564 14. Mekonen EG, Zegeye AF, Workneh BS. Complementary feeding practices and
565 associated factors among mothers of children aged 6 to 23 months in Sub-saharan
566 African countries: a multilevel analysis of the recent demographic and health survey.
567 *BMC Public Health.* 2024;24(1):115. <https://doi.org/10.1186/s12889-023-17629-w>

568 15. Nguyen PH, Kachwaha S, Avula R, Young M, Tran LM, Ghosh S, et al. Maternal
569 nutrition practices in Uttar Pradesh, India: Role of key influential demand and supply
570 factors. *Matern Child Nutr.* 2019;15(4):e12839. <https://doi.org/10.1111/mcn.12839>

571 16. Wako WG, Wayessa Z, Fikrie A. Effects of maternal education on early initiation and
572 exclusive breastfeeding practices in sub-Saharan Africa: a secondary analysis of
573 Demographic and Health Surveys from 2015 to 2019. *BMJ Open*. 2022;12(3):e054302.
574 <https://doi.org/10.1136/bmjopen-2021-054302>

575 17. Patriota ÉSO, Abrantes LCS, Figueiredo CMG, Pizato N, Buccini G, Gonçalves VSS.
576 Association between household food insecurity and stunting in children aged 0–59
577 months: Systematic review and meta-analysis of cohort studies. *Matern Child Nutr.*
578 2024;20(2):e13609. <https://doi.org/10.1111/mcn.13609>

579 18. Reyes-Matos U, Mesenburg MA, Victora CG. Socioeconomic inequalities in the
580 prevalence of underweight, overweight, and obesity among women aged 20–49 in low-
581 and middle-income countries. *Int J Obes (Lond)*. 2020;44(3):609–16.
582 <https://doi.org/10.1038/s41366-019-0503-0>

583 19. Heidkamp RA, Piwoz E, Gillespie S, Keats EC, D'Alimonte MR, Menon P, et al.
584 Mobilising evidence, data, and resources to achieve global maternal and child
585 undernutrition targets and the Sustainable Development Goals: An agenda for action.
586 *Lancet*. 2021;397(10282):1400–18. [https://doi.org/10.1016/S0140-6736\(21\)00568-7](https://doi.org/10.1016/S0140-6736(21)00568-7)

587 20. Matvienko-Sikar K, Toomey E, Delaney L, Harrington J, Byrne M, Kearney PM.
588 Effects of healthcare professional-delivered early feeding interventions on feeding
589 practices and dietary intake: A systematic review. *Appetite*. 2018;123:56–71.
590 <https://doi.org/10.1016/j.appet.2017.12.001>

591 21. Yaya S, Ekhluenetale M, Bishwajit G. Differentials in prevalence and correlates of
592 metabolic risk factors of non-communicable diseases among women in sub-Saharan
593 Africa: evidence from 33 countries. *BMC Public Health*. 2018;18(1):1168.
594 <https://doi.org/10.1186/s12889-018-6085-2>

595 22. Ajao KO, Ojofeitimi EO, Adebayo AA, Fatusi AO, Afolabi OT. Influence of family
596 size, household food security status, and child care practices on the nutritional status of
597 under-five children in Ile-Ife, Nigeria. *Afr J Reprod Health*. 2010;14(4 Spec No.):117–26.

598 23. Olatona FA, Adenihun JO, Aderibigbe SA, Adeniyi OF. Complementary feeding
599 knowledge, practices, and dietary diversity among mothers of under-five children in an
600 urban community in Lagos State, Nigeria. *Int J MCH AIDS*. 2017;6(1):46–59.
601 <https://doi.org/10.21106/ijma.203>

602 24. Leroy JL, Olney DK, Nduwabike N, Ruel MT. Tubaramure, a food-assisted
603 integrated health and nutrition program, reduces child wasting in Burundi: a cluster-
604 randomized controlled intervention trial. *J Nutr*. 2021 Jan;151(1):197-205. doi:
605 10.1093/jn/nxaa330.

606 25. Fletcher RH, Fletcher SW, Fletcher GS. Clinical epidemiology: The essentials. 6th
607 ed. Philadelphia: Wolters Kluwer; 2022.
608 <https://www.wolterskluwer.com/en/solutions/ovid/clinical-epidemiology-the-essentials-2532>

610 26. Mbunge E, Sibiya MN. Mobile health interventions for improving maternal and child
611 health outcomes in South Africa: A systematic review. Glob Health J. 2024;8(3):103–12.
612 <https://doi.org/10.1016/j.glohj.2024.08.002>

613

UNDER PEER REVIEW JNHM

UNDER PEER REVIEW JNHM

UNDER PEER REVIEW JNHM